Synopsis Photonics Symposium

Extending Wafer Level Chip Scale Packaging (WLCSP) to Photonics using Photonics Interposers

Dr. Suresh Venkatesan CEO, POET Technologies

Mathematical Introduction

- Application Proof Points
- Conclusions

Photonics is undergoing a revolution today, in much the same way as VLSI underwent a revolution these past three decades.

Silicon Based Integration platforms are the key to the predicted explosion in growth

Compute (Chip to Chip communication)

> Automobiles (LIDAR)

> > Wearables (Healthcare)

Smartphones (Healthcare, Sensing)

Millions/Year

100s of Millions/Year

Billions/Year

Key challenges in Photonics

Current technologies are <u>not scalable</u> for applications needing 100's of millions and billions of units per year

Millions/Year	VECTOR	CURRENT TECHNOLOGIES	POET	REASON		
	Unit Volume	X	\checkmark	Manufacturing, test and packaging is <u>fully</u> automated		
100s of Millions/Year	Size	X	\checkmark	Components are integrated into a <u>single chip</u>		
the set of	Cost	X	\checkmark	Everything is done at <u>wafer-</u> <u>scale</u> with semiconductor technology		
Billions/Year	Power Consumption	×	\checkmark	Components are <u>fully integrated</u> electrically and optically		

✓ FULL integration of components

The POET Optical Interposer is the first-ever chip-scale hybrid integration of electronics and photonics into a single chip using wafer-level processing, assembly, test

- <u>Chip-Scale</u>: integrated into a single chip on a standard silicon wafer.
- Hybrid: Use "known-good" and "best-of-breed" components made from different materials.
- <u>Wafer-Level</u>: All processes are done on full wafers, 100's at a time, rather than one at a time, in an automated process.

 \checkmark NO Active Alignment of Components \checkmark ALL done with automated semiconductor equipment at wafer-level

POET's Optical Interposer

- Two layers of low loss optical interconnects
- Multiple electrical redistribution layers with low RF insertion loss
- High throughput visually assisted passive "pick and place" assembly of electronics and photonics ICs and components
- In plane and Out of plane Optical Interfaces

High Speed PDs Thermistor Pad

6

Simplified Design, Improved Energy and Lower Cost

Data Communications Challenges

- Serial data communication channels have not been able to keep up with the pace of bandwidth growth.
- Number of communications lanes increase as data rate increases!

Data Rate	Number of lanes				
10G	1				
40G	4				
100G	1/4				
200G	4				
400G	4				
800G	8				
1.6T	8/16				
3.2T	16				

2 integrated Tx and Rx optical engines with no active alignment
 Readily scalable to 16 channel implementations

Example of **Design Flexibility** offered by an Interposer platform

- 1. Flip Chip Driver/Laser : Low Latency
- 2. All pads re-configured to a single facet end for each of chiplet integration
- 3. Through Silicon Vias for Signal Integrity for Signal/Ground
- 4. Integrated Athermal and Low Loss Multiplexer
- 5. Integrated Power Monitoring
- 6. Integrated Passive Devices

Quad Chiplets Integration for 1.6Tbps

Why Scale (and Signal Integrity) matter

- Small Factor / Good Signal Integrity (no wirebonds, direct access to PCB with TSVs) → POET's
 engines can be located anywhere on the PCB minimizing the electrical trace lengths
- For 800G and beyond with no gear box requirements this can enable Direct Drive capabilities directly from the Switch, eliminating the DSP requirements → 6-8W power reduction per module !!
- Can enable "CPO performance" within a Pluggable Form Factor

Key Competitive Differentiators

POET's Optical Interposer provides a comprehensive integration platform relative to incumbent competing technologies

Best in class integration of Tx and Rx: Small size, lower power and customizable design Compared to other Silicon Photonic PIC vendors

Competition	Key competitors	Wafer scale Assembly scale and cost	Hybrid integration best of breed components	Form Factor small size & customizable	Discrete Component	Vendor A	Vendor B	Vendor C	Vendor D	POET OE
POET		U	U	U	Modulator	Modulator	Modulator	Modulator	Modulator	Modulator
					Lasers	Colored lasers		Grey lasers	Colored lasers	Colored lasers
Conventional OSA Suppliers	Mitsubishi, Sumitomo, CIG, San-U, Tsuhan, Others	0	•	•	MUX	? MUX			MUX	Monolithically integrated MUX
					Isolator					None needed
Silicon Photonics	Intel, Marvell, Cisco, Others	•			DMUX					Monolithically integrated DMUX
					Photodiodes		✓ Photodiodes	✓ Photodiodes		Photodiodes
Vertically Integrated Module Makers	Innolight, II-VI, Others	0		•	TIA		✓ Flip-chip TIA			Flip-chip TIA
					FAU					🗹 FAU

POET's Hybrid Integration Platform provides a COMPLETE solution for next generation Data Center Interconnects as well as other parallel market verticals

Application Platforms

6mm

6.4Tbps

- **DML/EML Implementation**
- **Custom Configurations**
- Industry leading form factor with two layer waveguides (optical chiplet : 18mmx18mm)

Extensible to 200G/ λ with TFL (thin film LiNbO3) modulators •

Remote Light Sources

- **C** Band and **O** Band Applications •
- **CPO and AI applications** •

Optical Interposer Light Sources for High Bandwidth Communications

Engaged with leading AI-ML Accelerator and Chip-Chip communication companies to provide novel light sources at lower cost and greater flexibility than conventional laser suppliers.

- POET's Optical Interposer platform enables wafer scale, passive assembly of high channel count lasers – with in-built splitting / multiplexed solutions as required
- Eliminates the requirements for laser array use which are very expensive
- Meets cost, form factor and SCALE requirements for high volume applications
- Optimized laser coupling efficiency and power
- Ability to integrate micro-optics at wafer scale
- Chip-on-board construction ; Eliminate expensive PM cables otherwise required

Optical Interposers for Integrating New Materials

Heterogenous Integration

Transferred / Bonded on the wafer

High Material Integration flexibility

Best Material for the application

Low Cost Potential

Emerging Technology

Monolithic Integration Deposited or Grown on the wafer

- Best Cost Option Potential
- Complex Performance tradeoffs
- Limited Materials Choice
- Mature for some platform materials (eg. SiN)

- Hybrid Integration Assembled on to target as finished components
- High Flexibility
- Wafer Scale Assembly Techniques with pick and place
- Known Good Die
- Great option for limited numbers of components
- Limited Performance Tradeoffs
- Packaging Simplicity
- Best components for the application

Lithium Niobate has advantages but lacks Integration Capability

More Bandwidth (internet bandwidth grows by 100X in the next decade)

More compact and faster EO Modulators

EO Light control below 1um wavelength (In wavelength range that Silicon or InP are not transparent)

Wide Transparency Window

Integration and Scalability (The magic of the Interposer is the miniaturization of optics)

Extend Capability without giving up integration and scalability using a Heterogenous Interposer

Power Consumption (Data Centers consume increasingly large percent of energy)

Efficient and Low Loss EO Modulators

Non Linear Photonics and Metrology (Wavelength conversion, 2nd harmonic generation, optical frequency combs)

Large $\chi^{(2)}$ and $\chi^{(3)}$ Optical Non Linearity

An Optical Interposer breathes integration potential to novel materials which otherwise might have challenges integrating to the tight form factors required for next generation modules

Topics

Mathematical Introduction

Application Proof Points

Conclusions

Flip Chip Lasers Integration in POET's Optical Engines

- POET's Interposer platform includes proprietary features for laser attach
- Laser waveguide coupling performance excellent for both CW and DML lasers
- Passive laser placement and wafer scale assembly

Thermal Resistance

- The Thermal Resistance of the Interposer dictates the high temperature performance of the laser which in turn affects such parameters as Reliability, Bandwidth and Power consumption
- Optimization of the assembly conditions helps achieve equivalent thermal resistance for ultra small DML lasers that are only **250um x 150um** in size

Good Laser thermal performance demonstrated for latest generation of 56G DML lasers

FR4 (100G/200G/400G) and LR4(100G) Filter performance

LR4 : 2.5nm pass band, 800GHz spacing

- Insertion Loss including fiber coupling < 1.8dB (FR4) and < 1.5dB (LR4) including fiber coupling
- Cross Talk > 25dB
- Design frozen and taped out for qualification and production
- Data accumulated on 100's of chips across multiple wafers

Industry Leading Fiber Coupling Performance

Measured Fiber Coupling Optical Losses

Total loss from input to output : 0.7dB Best measured fiber coupling loss : 0.2dB/facet Transmission Loss : 0.3dB Expected in Production: 0.5bB/facet

Vertical Coupling Mirrors

POET uses vertical coupling mirrors as a low loss alternative to grating couplers to couple light "out of plane" to the waveguides – these are used for coupling light to conventional top entry / emitting devices and for wafer level test

Linear Mirrors : Used with 100G/200G PDs (28Gbps)

W021-0212-SAIC PD ARRAY-30um Aperture G1-U04-240SHB5-CD5-B1-D1 13nm PBE XT:32.17/27.22/27.73/27.73/B 13nm PBE IL:2-3/-2.11/-2.19/-2.33dB CWL Shift:-1.53/-1.64/-1.52/-1.61nm

Paraboloid Mirrors: Used with 400G PDs (56Gbps)

W021-0232-GCS PD U4-453SHC3-CC6-B1-D1 13nm PBE XT:102.62/102.62/102.56/103.57dB 13nm PBE IL >2.59/-2.59/-2.63/-2.51dB CWL Shift:0.72/0.76/0.7/0.82nm 0

Vertical Mirror Performance

ost-PD

Consistent performance both pre and post PD bonding

Mathematical Introduction

- Application Proof Points
- Conclusions

100G CWDM Optical Engine

- Excellent Eye Margin and Extinction ration across the temperature range for Data Centers
- DML engine is extensible in performance from 100G -> 200G 400G
- POET will offer the lowest cost, highest density DML engine by incorporating 56Gbaud DMLs into its platform
- Competitive solution for Co-packaged optics

200G FR4 Optical Engine

Common Optical Engine meeting the requirements of 100/200G

200G Optical Engine on Evaluation Board

Excellent 200G PAM4 signals through the Optical Interposer 200G Rx also shows excellent performance (not shown)

Optical Performance @ 75C

100G LR4 Optical Engine

CH1 ER=4.25dB, EMM=13.2%

CH3 ER=4.23dB, EMM=21.4%

CH2 ER=4.4dB, EMM=15.4%

CH4 ER=4.36dB, EMM=20.9%

Industry first implementation of a "chip on board" LR4 implementation !!

Channel 1 performance impacted by OOS wavelength

400G/800G FR4 Receiver Performance

400G FR4 Receivers integrated into 400G FR4 engine

1.6Tbps FR4 Demonstrator

Market Introduction

Application Proof Points

Conclusions

Flexible Architectures for multiple applications

Modulated Laser solutions using the Optical Interposer

Integrated Laser/PIC solution using the Optical Interposer

